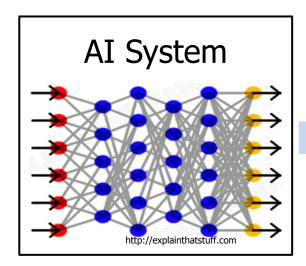
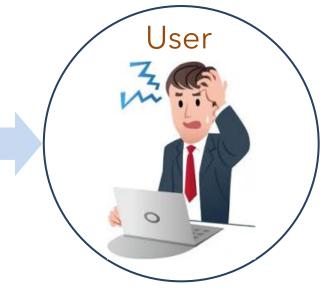
Explainable Artificial Intelligence (XAI)

David Gunning
Information Innovation Office (I2O)
Defense Advanced Research Projects Agency (DARPA)

DARPA The Need for Explainable AI

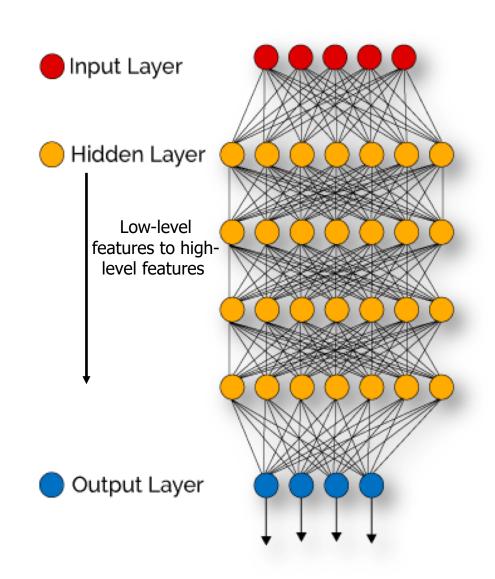


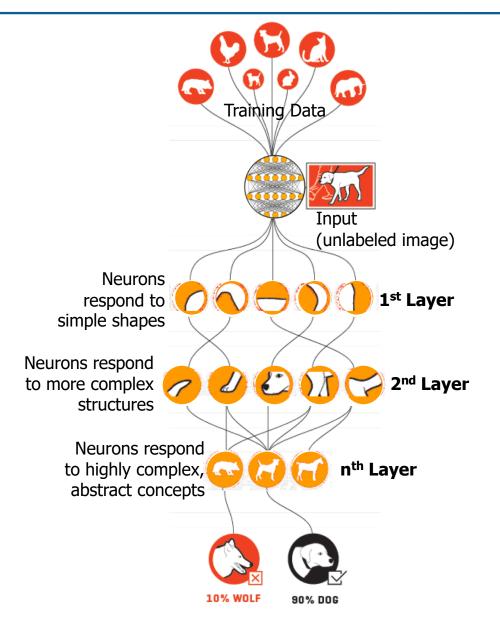
- We are entering a new age of Al applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand



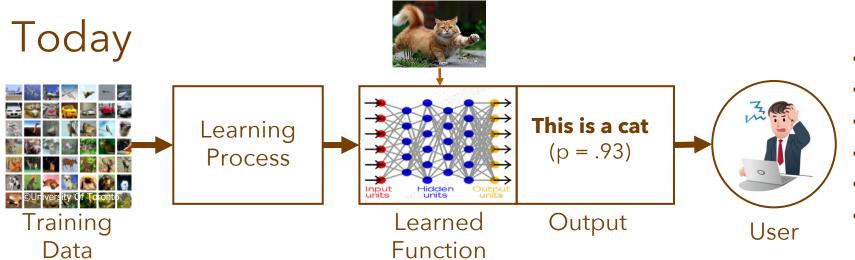
- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

DARPA Deep Learning Neural Networks

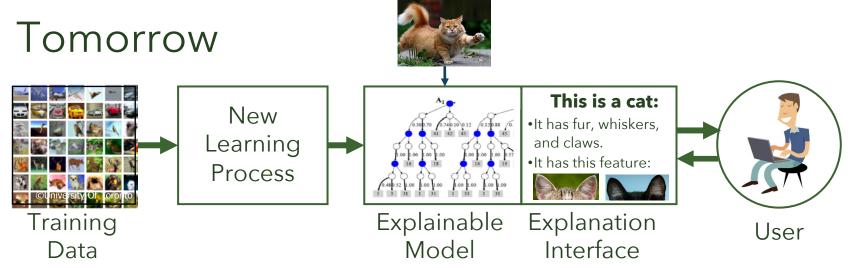




What are we trying to do?



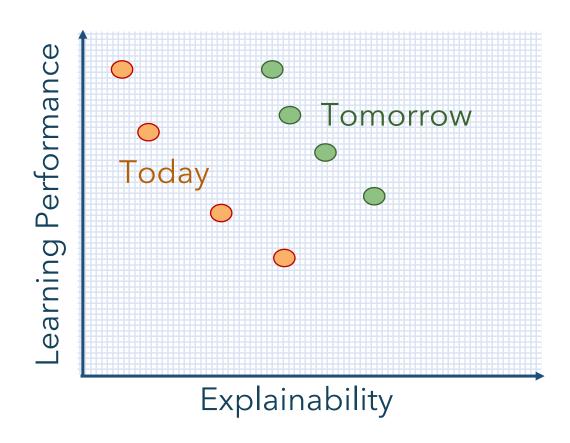
- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?



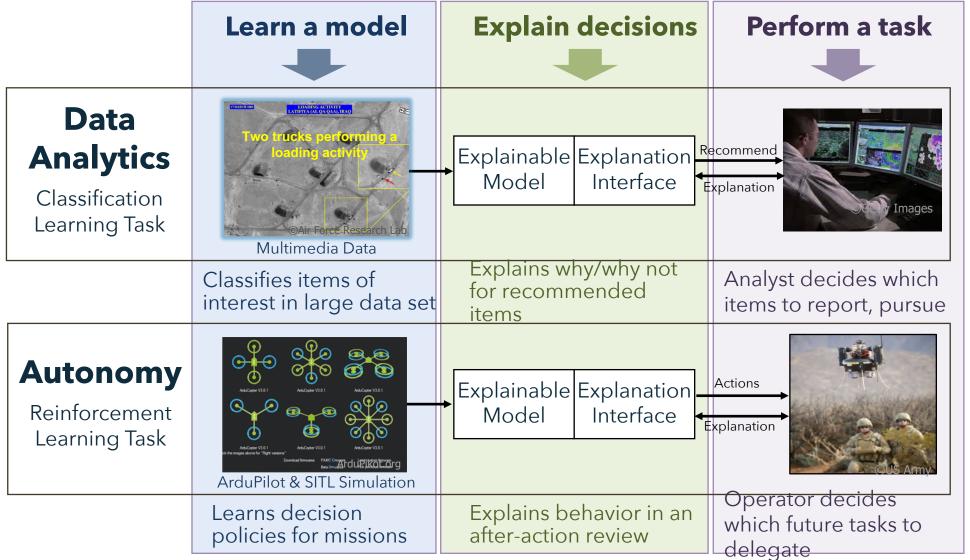
- I understand why
- I understand why not
- I know when you'll succeed
- I know when you'll fail
- I know when to trust you
- I know why you erred

DARPA Goal: Performance and Explainability

- XAI will create a suite of machine learning techniques that
 - Produce more explainable models, while maintaining a high level of learning performance
 - Enable human users to understand, appropriately trust, and effectively manage the emerging generation of Al systems



Challenge Problems

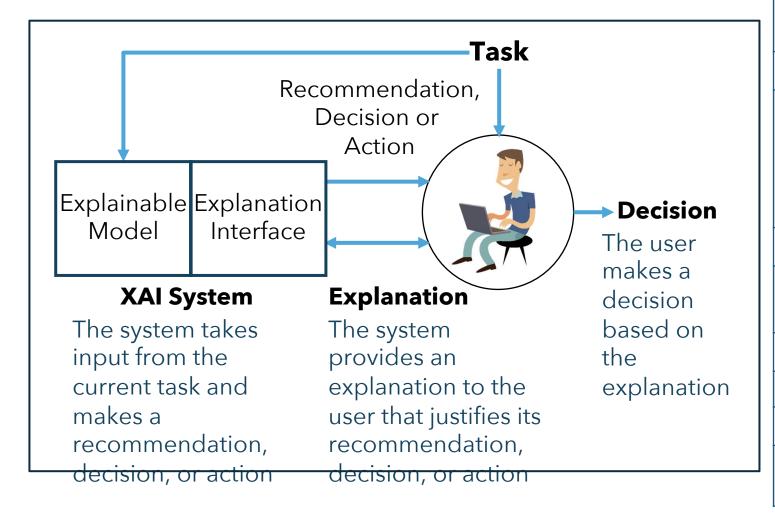


An analyst is looking for items of interest in massive multimedia data sets

An operator is directing autonomous systems to accomplish a series of missions

Measuring Explanation Effectiveness

Explanation Framework



User Satisfaction

- Clarity of the explanation (user rating)
- Utility of the explanation (user rating)

Mental Model

- Understanding individual decisions
- Understanding the overall model
- Strength/weakness assessment
- 'What will it do' prediction
- 'How do I intervene' prediction

Task Performance

 Does the explanation improve the user's decision, task performance?

Trust Assessment

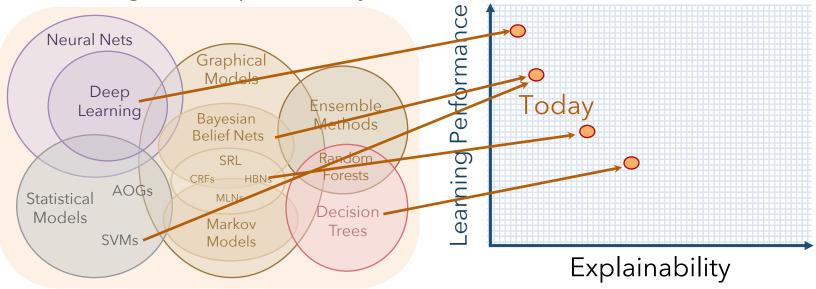
Appropriate future use and trust

Correctability (Extra Credit)

- Identifying errors
- Correcting errors

DARPA Developing an Explainable Model

Learning Techniques (today)

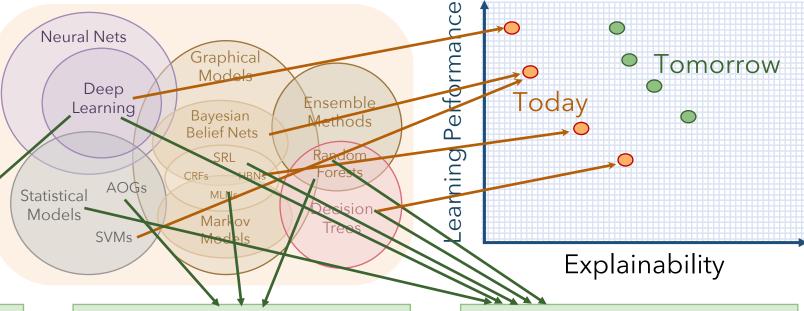


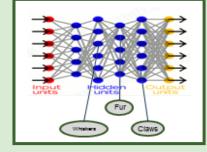
DARPA Developing an Explainable Model

XAI Goal

Create a suite of machine learning techniques that produce more explainable models, while maintaining a high level of learning performance

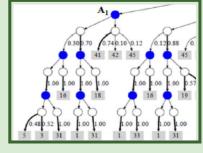
Learning Techniques (today)





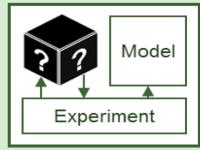
Deep Explanation

Modified deep learning techniques to learn explainable features



Interpretable Models

Techniques to learn more structured, interpretable, causal models



Model Induction

Techniques to infer an explainable model from any model as a black box

CP

Performer

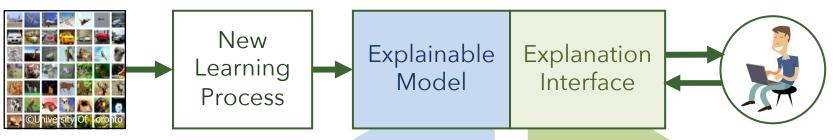
Raytheon BBN

UT Dallas

Texas A&M

Rutgers

DARPA XAI Developers and Technical Approaches



Explainable Model

Deep Learning

Mimic Learning

Model Induction

Probabilistic Logic

	Explanation Quality User Performance
Explanation	User Satisfaction
—	User's Mental Model Better Performance
Trust or Mistrust	User Comprehension
	Appropriate Use Appropriate Use

UC Berkeley Deep Learning Reflexive and Rational Both **Charles River** Causal Modeling **Narrative Generation UCLA** Pattern Theory+ 3-level Explanation Autonomy **Oregon State** Adaptive Programs **Acceptance Testing** PARC Cognitive Modeling **Interactive Training** Explainable RL (XRL) **CMU XRL** Interaction SRI International Deep Learning Show and Tell Explanation

IHMC Psychological Models of Explanation

Explanation Interface

Argumentation and Pedagogy

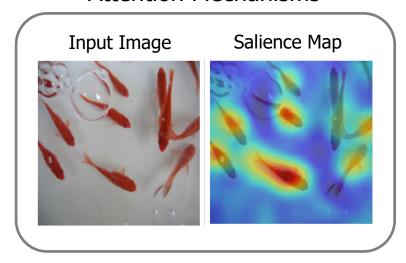
Decision Diagrams

Bayesian Teaching

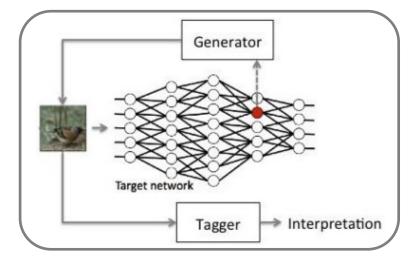
Interactive Visualization

Approaches to Deep Explanation

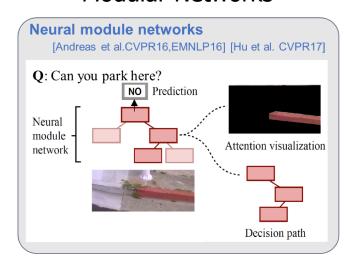
Attention Mechanisms



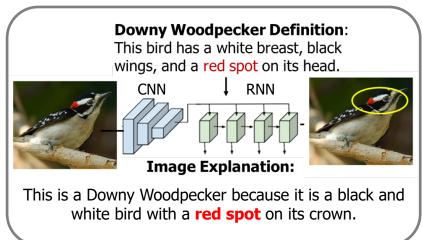
Feature Identification



Modular Networks



Learn to Explain



DARPA Deeply Explainable Artificial Intelligence

UC Berkeley, Boston U., U. Amsterdam, Kitware

Explainable Model

Deep Learning

- Post-hoc explanations by training additional DL models
- Explicit introspective explanations (Neural Module Networks)
- Reinforcement Learning
 - Informative rollouts
 - Explicit modular agent

Explanation Interface

Reflexive and Rational

- Reflexive explanations (arise from the model)
- Rational explanations (come from reasoning about user's beliefs)
- Evaluation criteria
 - Human interpretability
 - Predictive behavior
 - Appropriate trust

Challenge Problem

Autonomy

- Vehicle control (BDD-X, CARLA)
- Strategy games (StarCraft II)

Data Analytics

 Visual QA and filtering tasks (VQA-X, ACT-X, xView, DiDeMo, etc.)

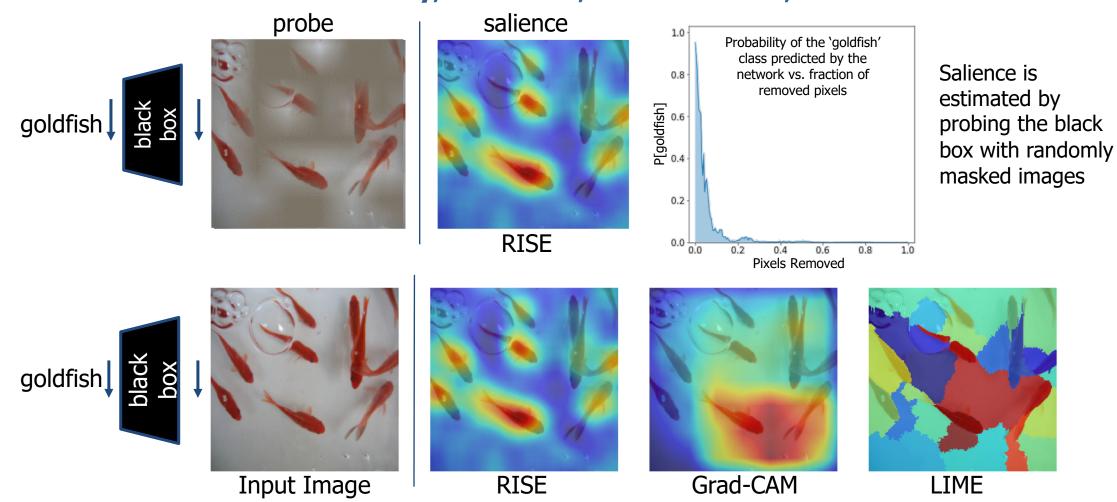
- **PI**: Trevor Darrell (UC Berkeley)
- Pieter Abbeel (UC Berkeley)
 Dan Klein (UC Berkeley)
- Tom Griffiths (UC Berkeley) • John Canny (UC Berkeley)
- Kate Saenko (Boston U.)
- Anca Dragan (UC Berkeley)

 Zeynep Akata (U. Amsterdam)

- Anthony Hoogs (Kitware)

High Fidelity Visual Salience Model

UC Berkeley, Boston U., U. Amsterdam, Kitware



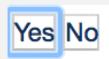
Petsiuk, Das and Saenko. RISE: Randomized Input Sampling for Explanation of Black-box Models, 2018

Textual justification with grounding and pragmatics

Given the multi-modal explanation generated by the model, do you think the system will answer correctly?

Question: *Does this elephant have tusks?*

"because there are no bones sticking out from its mouth"



<u>Incorrect!</u> The system answered "no" when the ground-truth answer is "yes"

Question: *Is this a professional sporting event?*

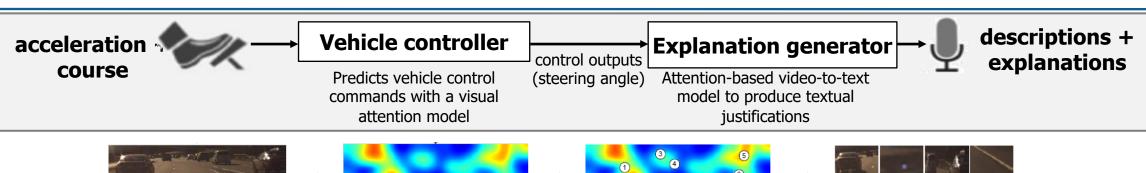
"because the players are wearing official jerseys"

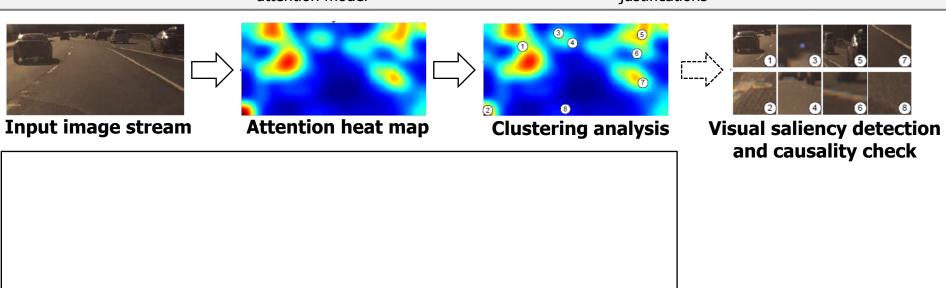
<u>Correct!</u> The system answered "yes" when the ground-truth answer is "yes"

Explanation Effectiveness	Attention for Explanation Used?	Accuracy of Users Judgement
Without explanation (existing SOTA)	No	57.5%
UCB Model on descriptions	Yes	66.5%
UCB Model without attention	No	61.5%
UCB Model	Yes	70.0%

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele, Trevor Darrell, and Marcus Rohrbach. Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, 2018

DARPA Causal Grounded Driving





Kim and Canny, in ICCV, 2017 Kim, Rohrbach, Darrell, Canny, and Akata, in NIPS Interpretable ML Symposium, 2017

DARPA CAMEL: Causal Models to Explain Learning

Charles River Analytics (CRA), U. Mass, Brown

Explainable Model

Causal Modeling

 Experiment with the learned model (as a grey box) to learn an explainable, causal, probabilistic programming model

Explanation Interface

Narrative Generation

 Interactive visualization based on the generation of temporal, spatial narratives from the causal, probabilistic models

Challenge Problem

Autonomy

- Atari
- Starcraft

Data Analytics

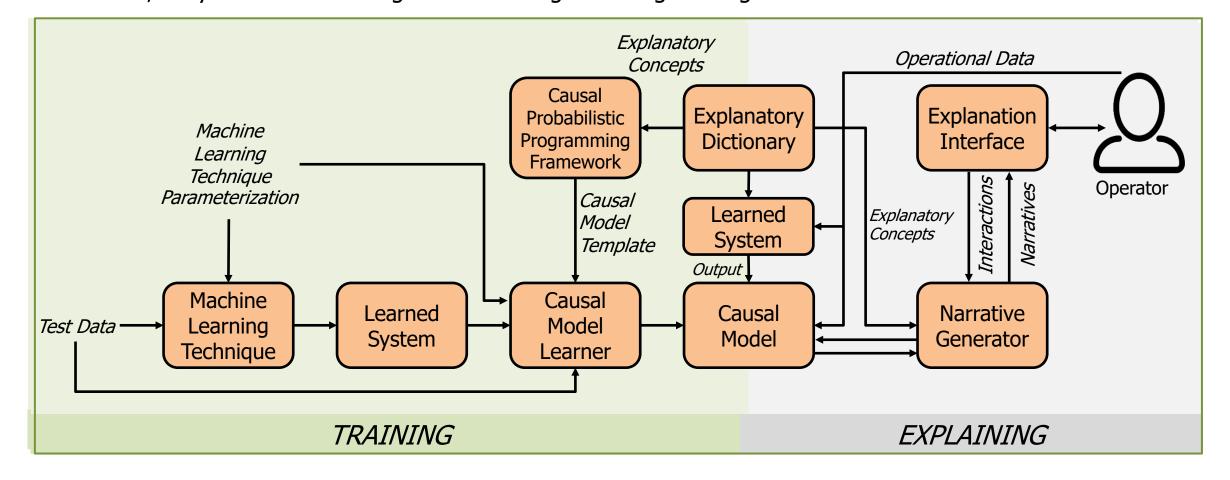
- Pedestrian Detection (INRIA)
- Activity Recognition (ActivityNet)

- **PI**: James Tittle (CRA)
- Jeff Druce (CRA)
- Avi Pfeffer (CRA)
- David Jensen (U. Mass)
- Michael Littman (Brown U.)
- James Niehaus (CRA)
- Emilie Roth (Roth Cognitive Engineering)
- Joe Gorman(CRA)
- James Tittle (CRA)

DARPA Causal Models to Explain Learning (CAMEL)

Charles River Analytics, U. Mass, Brown

Generate causal explanations of ML operation and present them to the user as intuitive narratives in an interactive, easy-to-use interface grounded in cognitive engineering theories



Learning and Communicating Explainable Representations

UCLA, Oregon State, Michigan State

Explainable Model

Pattern Theory+

Interpretable representations

- STC-AOG: spatial, temporal, and causal models
- STC-PG: scene and event interpretations in analytics
- STC-PG+: task plans in autonomy

Theory of mind representations

- User's beliefs
- User's mental model of agent

Explanation Interface

3-Level Explanation

- Concept compositions
- Causal and counterfactual reasoning
- Utility explanations

Explanation representations:

- X-AOG: explanation model
- X-PG: explanatory parse graph as dialogue
- X-Utility: priority and loss for explanations

Challenge Problem

Autonomy

- Robot executing daily tasks in physics-realistic VR platform
- Autonomous vehicle driving (GTA5 game engine)

Data Analytics

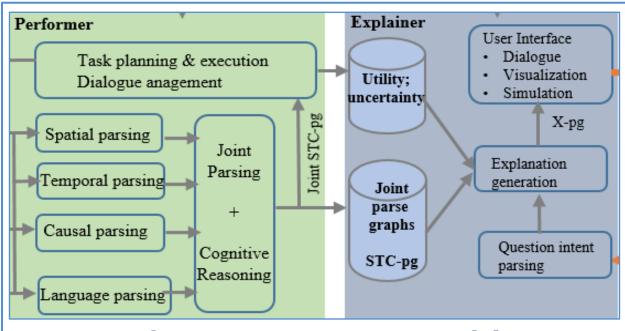
 Network of video cameras for scene understanding and event analysis

- PI: Song-Chun Zhu (UCLA)
- Ying Nian Wu (UCLA)
- Sinisa Todorovic (OSU)
- Joyce Chai (Michigan State)

Learning and Communicating Explainable Representations

UCLA, Oregon State, Michigan State

System Architecture



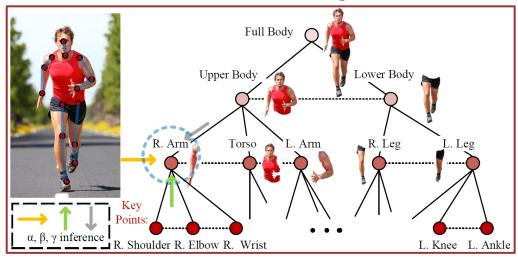
Performer

Outputs interpretable representations in a spatial, temporal, and causal parse graph (STC-PG)

Explainer

Outputs an explanatory parse graph (X-PG) in a dialogue process

STC Parse Graph



An attributed parse graph for a running person. Each node has 3 computing channels:

- α : grounding the node on DNN features;
- β : bottom-up;
- γ : top-down.

An explanation is represented as parse graph X-pg

xACT: Explanation-Informed Acceptance Testing of Deep Adaptive Programs

Oregon State University

Explainable Model

Adaptive Programs

Explainable Deep
 Adaptive Programs
 (xDAPs) – a new
 combination of
 Adaptive Programs,
 Deep Learning, and
 explainability

Explanation Interface

Acceptance Testing

 Provides a visual and Natural Language explanation interface for acceptance testing by test pilots based on Information Foraging Theory

Challenge Problem

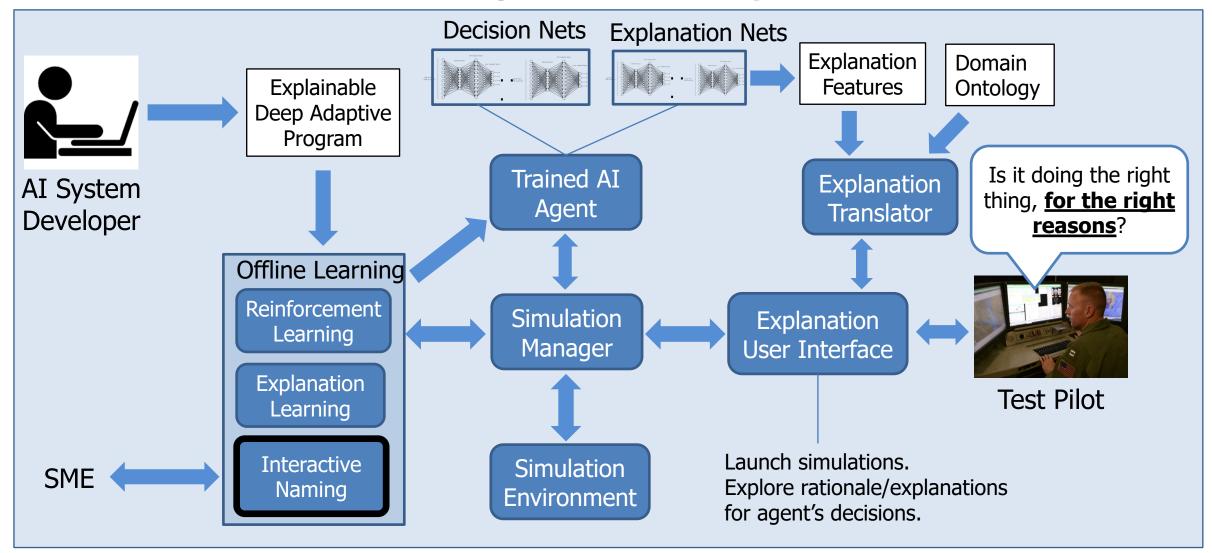
Autonomy

- Real-time Strategy
 Games based on custom designed game engine designed to support explanation
- Starcraft II

- **PI**: Alan Fern (OSU)
- Tom Dietterich (OSU)
- Fuxin Li (OSU)
- Prasad Tadepalli (OSU)
- Weng-Keen Wong (OSU)
- Margaret Burnett (OSU)
- Martin Erwig (OSU)
- Liang Huang (OSU)

xACT: Explanation-Informed Acceptance Testing of Deep Adaptive Programs

Oregon State University



DARPA COGLE: Common Ground Learning and Explanation

PARC, CMU, U. Edinburgh, U. Michigan, USMA, IHMC

Explainable Model

Cognitive Model

3-layer architecture

- Learning Layer (DNNs)
- Cognitive Layer (ACT-R Cognitive Model)
- Explanation Layer (HCI)

Explanation Interface

Interactive Training

- Interactive visualization of states, actions, policies, and values
- Module for test pilots to refine and train the system

Challenge Problem

Autonomy

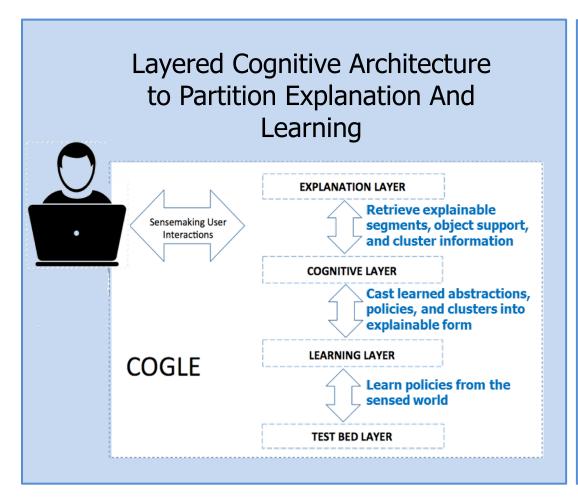
- MAVSim wrapper over ArduPilot simulation environment
- Value of Explanation framework for measuring explanation effectiveness

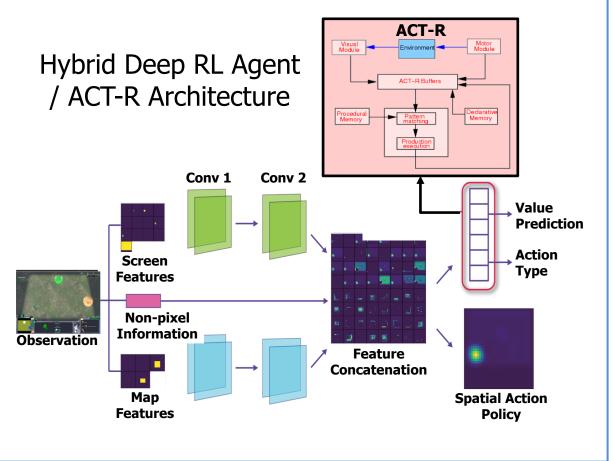
- PI: Mark Stefik (PARC)
- Honglak Lee (U. Michigan)
- Subramanian Ramamoorthy (U. Edinburgh)

- Christian Lebiere (CMU)
- John Anderson (CMU)
- Robert Thomson (USMA)
- Michael Youngblood (PARC)

DARPA COGLE: Common Ground Learning and Explanation

PARC, CMU, U. Edinburgh, U. Michigan, USMA, IHMC





DARPA XRL: Explainable Reinforcement Learning

Carnegie Mellon University

Explainable Model

Explainable RL (XRL)

 Create a new scientific discipline for Explainable Reinforcement Learning with work on new algorithms and representations

Explanation Interface

XRL Interaction

- Interactive explanations of dynamic systems Human-machine
- interaction to improve performance

Challenge Problem

Autonomy

- Open AI Gym
- Autonomy in the electrical grid
- Mobile service robots
- Self-improving educational software

- **PI**: Zico Kolter (CMU)
- Geoff Gordon (CMU)
- Pradeep Ravikumar (CMU)

DARPA XRL: Explainable Reinforcement Learning

Carnegie Mellon University

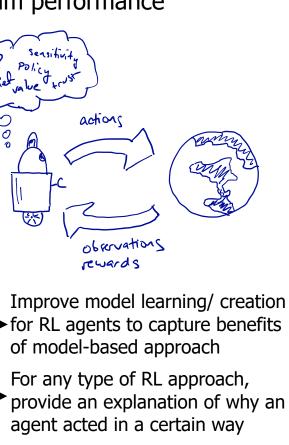
Create a new discipline of explainable RL to enable dynamic human-machine interaction and adaptation for maximum team performance

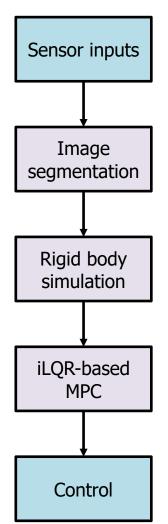
Model-based

Learn dynamics model of environment, plan actions in model, and execute in real system

Model-free

Directly learn value and/or policy for the environment





Differentiable Physics - Applies implicit differentiation to solutions of LCP to analytically derive a backpropagation update of next state with respect to previous state, control, and model parameters

DARE: Deep Attention-based Representations for Explanation

SRI International, U. Toronto, UCSD, U. Guelph

Explainable Model

Deep Learning

Multiple deep learning techniques

- Attention-based mechanisms
- Compositional NMNs
- GANs

Explanation Interface

Show & Tell Explanation

- DNN visualization
- Query evidence that explains DNN decisions
- Generate natural language justifications

Challenge Problem

Data Analytics

- VQA
 - Visual Gnome
 - Flickr30
- MovieQA

• **PIs**: Giedrius Burachas (SRI), Mohamed Amer (SRI)

- Xiao Lin (SRI)
- Ryan Villamil (SRI)
- Dejan Jovanovic (SRI)
- Avi Ziskind (SRI)
- Michael Wessel (SRI)

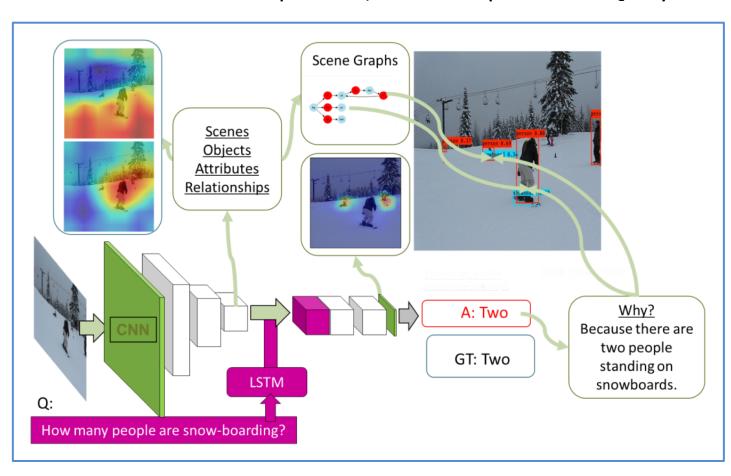
Richard R. Zemel (U. Toronto)
Sanja Fidler (U. Toronto)
David Duvenaud (U. Toronto)
Graham Taylor (U. Guelph)

• Jürgen Schulze (UCSD)

DARE: Deep Attention-based Representations for Explanation

SRI International, U. Toronto, UCSD, U. Guelph

Interpretable, Scene Graph-based VQA System with Active Attention



- Generate "show-and-tell" explanations with justifications of decisions accompanied by visualizations of input data used to generate inferences
- Scene and Situation Graphs, inferred from images and videos, support rich multimodal data analytics and explanations
- Scene Graphs guide attentional scanning for interpretable analytics

EQUAS: Explainable QUestion Answering System

Raytheon BBN, Georgia Tech, UT Austin, MIT

Explainable Model

Deep Learning

- Semantic labelling of DNN neurons
- DNN audit trail construction
- Gradient-weighted Class Activation Mapping

Explanation Interface

Argumentation Theory

- Comprehensive strategy based on argumentation theory
- NL generation
- DNN visualization

Challenge Problem

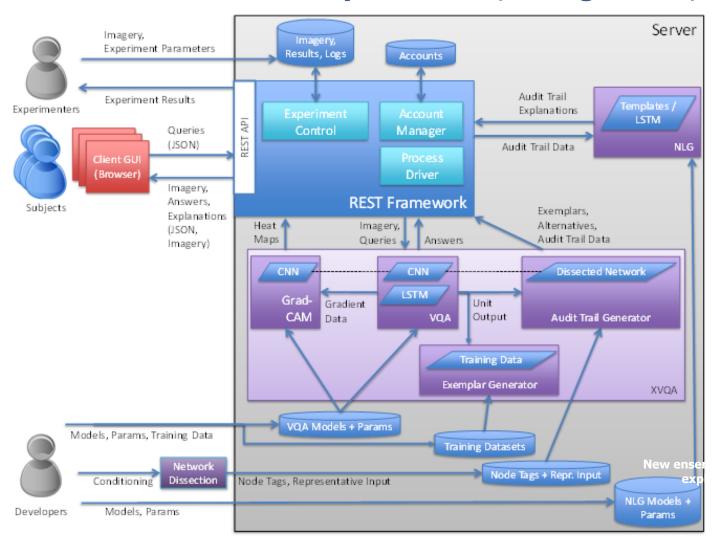
Data Analytics

VQA for images and video

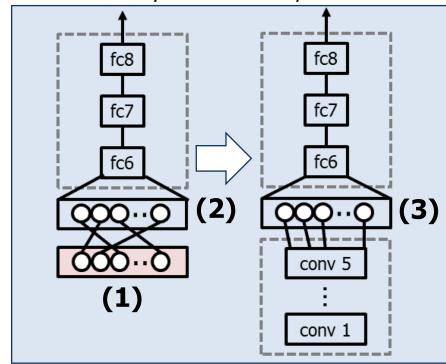
- **PI**: William Ferguson (Raytheon BBN)
- Antonio Torralba (MIT)
- Ray Mooney (UT Austin)
- Devi Parikh (Georgia Tech)
- Dhruv Batra (Georgia Tech)

EQUAS: Explainable QUestion Answering System

Raytheon BBN, Georgia Tech, UT Austin, MIT



Improve the interpretability of units using a **new conditioning method** to retrain the network to intentionally include *concept detectors*



- 1) Pick units from standard vocabulary
- 2) Train top part of net
- 3) Use top to train bottom

DARPA Tractable Probabilistic Logic Models

UT Dallas, UCLA, Texas A&M, Indian Institute of Technology

Explainable Model

Probabilistic Logic

 Tractable Probabilistic Logic Models (TPLMs) an important class of (non-deep learning) interpretable models

Explanation Interface

Decision Diagrams

 Enables users to explore and correct the underlying model as well as add background knowledge

Challenge Problem

Data Analytics

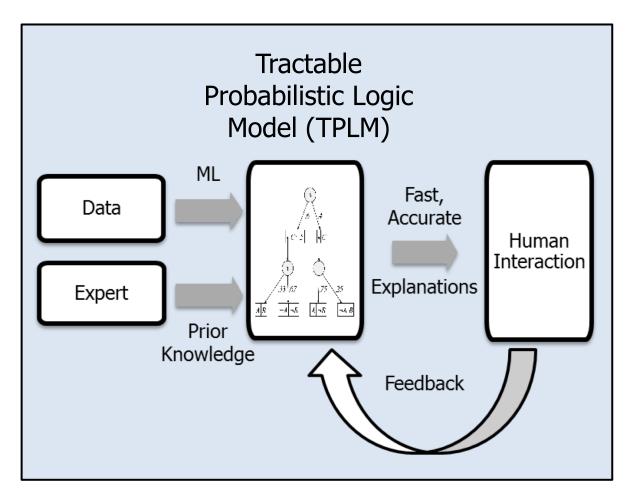
- Infer activities in multimodal data (video and text)
- Wetlab (biology) and TACoS (cooking) datasets

- **PI**: Vibhav Gogate (UT Dallas)
- Adnan Darwiche (UCLA)
- Guy Van Den Broeck (UCLA)
- Nicholas Ruozzi (UT Dallas)
- Eric Ragan (Texas A&M)
- Parag Singla (IIT-Delhi)

Tractable Probabilistic Logic Models

UT Dallas, UCLA, Texas A&M, Indian Institute of Technology

Use interpretable and tractable models based on well-founded principles from logic and probability theory



Find all videos in which a person peels oranges (explanations are captions generated by TPLMs)

Person using his hands to peel oranges. I can see the orange skin

Person using his hands. I can see the orange skin and skinless orange

Person using his hands to peel oranges. I can see the orange skin on the table and peeled oranges

Transforming Deep Learning to Harness the Interpretability of Shallow Models

Texas A&M, Washington State

Explainable Model

Mimic Learning

- Mimic learning framework combines DL models for prediction and shallow models for explanations
- Interpretable learning algorithms extract knowledge from DNNs for relevant explanations

Explanation Interface

Interactive Visualization

 Interactive visualization over multiple views, using heat maps and topic modeling clusters to show predictive features

Challenge Problem

Data Analytics

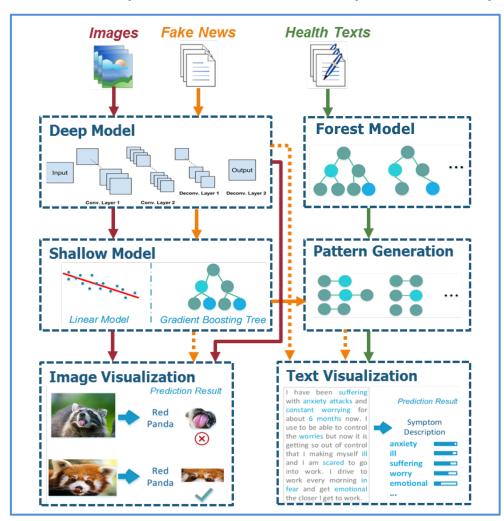
 Multiple tasks using data from Twitter, Facebook, ImageNet, and news websites

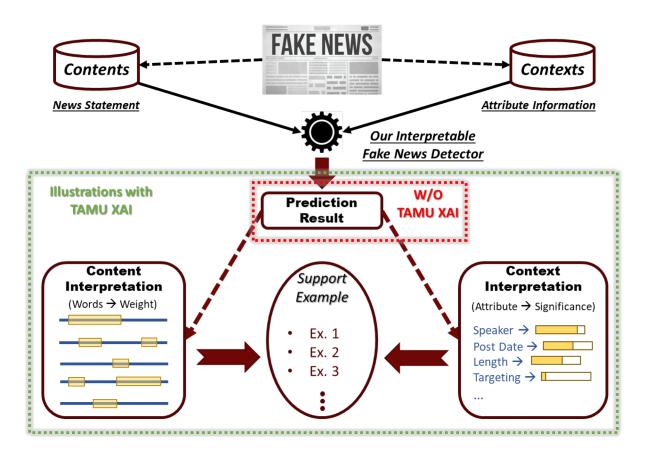
- PI: Xia Hu (Texas A&M)
- Shuiwang Ji (Wash. State)
 Eric
- Eric Ragan (Texas A&M)

Transforming Deep Learning to Harness the Interpretability of Shallow Models

Texas A&M, Washington State

Develop an end-to-end interpretable deep learning infrastructure with image and text datasets





Model Explanation by Optimal Selection of Teaching Examples

Rutgers University

Explainable Model

Model Induction

 Select the optimal training examples to explain model decisions based on Bayesian Teaching

Explanation Interface

Bayesian Teaching

- Example-based explanation of
 - Full model
 - User-selected substructure
 - User submitted examples

Challenge Problem

Data Analytics

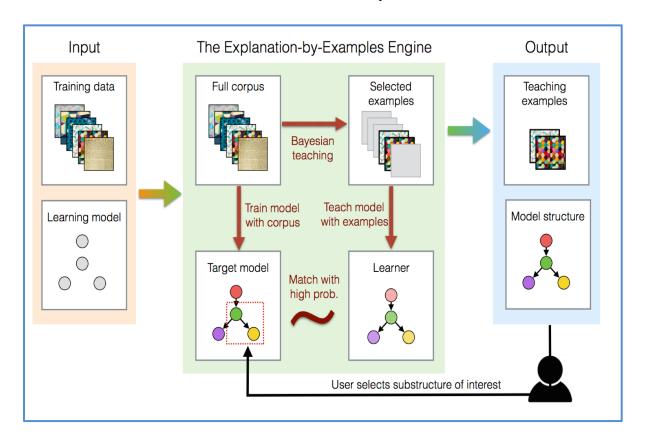
- Image processing
- Text corpora
- VQA
- Movie events

- **PI**: Patrick Shafto (Rutgers)
- Scott Cheng-Hsin Yang (Rutgers)

Model Explanation by Optimal Selection of Examples

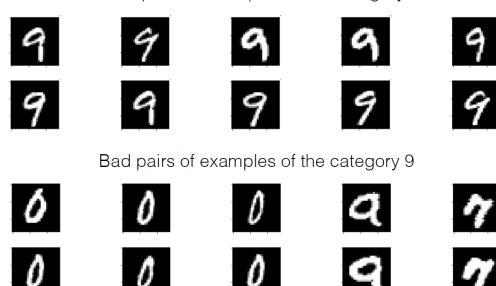
Rutgers University

Extend Bayesian teaching to enable automatic explanation by selecting the subset of data that are most representative of the model's generative process



Good and bad examples for teaching a category (illustrates model strengths and weaknesses)

Good pairs of examples of the category 9



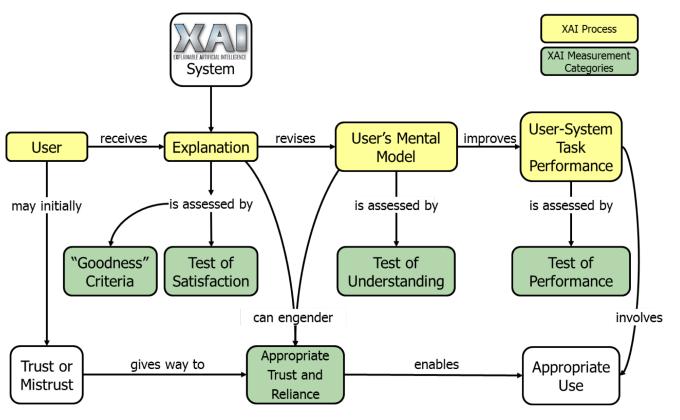
DARPA XAI Program Schedule

	CY2017	CY2018			CY2019		CY2020	CY2021
	FY2017	FY2018		FY201			FY2020	FY2021
	APR MAY JUN JUL AUG SEP OCT NOV DEC	JAN FEB MAR APR MAY JUN JUL AU	G SEP OCT NOV	DEC JAN FEB MAR APF	MAY JUN JUL AUG S	P OCT NOV DEC	JAN FEB MAR APR MAY JUN JUL AUG SEP CC	T NOV DEC JAN FEB MAR APR MAY
	PHASE 1		PHASE 2					
	Technology Demonstrations		Government Evaluations					
		Drop for	Evol A	al ve		val Analy	ze Eval	Analyze Results
Evaluator	Define Evaluation Fra	amework Prep for	Eval Ar	Prep	Prep for Eval 2		Prep for Eval 3	and
		Eval 1		Results		2 Resu	Its 3	Accept Toolkits
Explainable	Develop and Demonstrate Symbols able 5 to 1.0			fine and Test Explainable Eval Refine and Test Explainable Eval				Deliver
Learning	·		·		·	Software		
Systems	Learning Systems 1			Learning Systems 2			Learning Systems 3	Libraries and
Psychological	Summariza Current Da	uch alogical Davidon (omputati	innal Madal of		Dofin	as and Tast	Deliver
Models of	Summarize Current Psychological Develop Computati						ne and Test	Computational
Explanation	Theories of Explai	nation	Explanat	tion	Comp	utational	Model of Explanation	Model Software
•								
Meetings								
<u>-</u>	Kickoff Progress Rep	ort Tech Demos		Eval 1 Results		Eva	al 2 Results	Final

Phase 1 Evaluations

DARPA Evaluation Framework

Explanation Process & Measures



Experimental Conditions

Without Explanation - The explainable learning system is used to perform a task without providing an explanation to the user

With Explanation - The explainable learning system is used to perform a task and generates explanations for every recommendation or decision it makes, and every action it takes

Partial Explanation - The explainable learning system is used to perform a task and generates only partial or ablated explanations (to assess various explanation features)

Control - A baseline state-of-the-art non-explainable system is used to perform a task

